Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 90
Filter
2.
Infect Dis Rep ; 16(2): 367-379, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38667754

ABSTRACT

Measles, a highly contagious disease primarily affecting children, carries serious health risks, including complications and mortality. Vaccination remains the most effective preventive measure against measles transmission. The COVID-19 pandemic has exacerbated challenges in surveillance and immunization efforts, leaving millions of people exposed to preventable diseases such as measles. Globally accelerated immunization campaigns are critical for achieving regional elimination goals and mitigating the risk of outbreaks. Our team has developed an open-access database for global measles monitoring, facilitating standardized data collection and analysis. The analysis of measles cases from 2011 to 2023 reveals fluctuating trends, with notable increases in Africa in 2019 and 2023, indicating potential gaps in control strategies. Using an automated signal detection tool developed by the European Centre for Disease Prevention and Control (ECDC) team, we identified significant variations between World Health Organization (WHO) regions, underscoring the importance of continuous monitoring to detect epidemiological changes early. These results underscore the need for robust surveillance systems and accelerated vaccination efforts to safeguard public health.

3.
Infect Dis Rep ; 16(2): 289-297, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38667750

ABSTRACT

The evolutionary dynamics of viruses, particularly exemplified by SARS-CoV-2 during the ongoing COVID-19 pandemic, underscore the intricate interplay between genetics, host adaptation, and viral spread. This paper delves into the genetic evolution of SARS-CoV-2, emphasizing the implications of viral variants on global health. Initially emerging from the Wuhan-Hu-1 lineage, SARS-CoV-2 rapidly diversified into numerous variants, each characterized by distinct mutations in the spike protein and other genomic regions. Notable variants such as B.1.1.7 (α), B.1.351 (ß), P.1 (γ), B.1.617.2 (δ), and the Omicron variant have garnered significant attention due to their heightened transmissibility and immune evasion capabilities. In particular, the Omicron variant has presented a myriad of subvariants, raising concerns about its potential impact on public health. Despite the emergence of numerous variants, the vast majority have exhibited limited expansion capabilities and have not posed significant threats akin to early pandemic strains. Continued genomic surveillance is imperative to identify emerging variants of concern promptly. While genetic adaptation is intrinsic to viral evolution, effective public health responses must be grounded in empirical evidence to navigate the evolving landscape of the pandemic with resilience and precision.

4.
Pathogens ; 13(4)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38668289

ABSTRACT

The influenza A(H1N1) pdm09 virus, which emerged in 2009, has been circulating seasonally since then. In this study, we conducted a comprehensive genome-based investigation to gain a detailed understanding of the genetic and evolutionary characteristics of the hemagglutinin (HA) and neuraminidase (NA) surface proteins of A/H1N1pdm09 strains circulating in Italy over a fourteen-year period from 2009 to 2023 in relation to global strains. Phylogenetic analysis revealed rapid transmission and diversification of viral variants during the early pandemic that clustered in clade 6B.1. In contrast, limited genetic diversity was observed during the 2023 season, probably due to the genetic drift, which provides the virus with a constant adaptability to the host; furthermore, all isolates were split into two main groups representing two clades, i.e., 6B.1A.5a.2a and its descendant 6B.1A.5a.2a.1. The HA gene showed a faster rate of evolution compared to the NA gene. Using FUBAR, we identified positively selected sites 41 and 177 for HA and 248, 286, and 455 for NA in 2009, as well as sites 22, 123, and 513 for HA and 339 for NA in 2023, all of which may be important sites related to the host immune response. Changes in glycosylation acquisition/loss at prominent sites, i.e., 177 in HA and 248 in NA, should be considered as a predictive tool for early warning signs of emerging pandemics, and for vaccine and drug development.

5.
Pathog Glob Health ; : 1-3, 2024 Apr 14.
Article in English | MEDLINE | ID: mdl-38616495
6.
J Clin Med ; 13(8)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38673507

ABSTRACT

Mpox, caused by viruses of the genus Orthopoxvirus, is an emerging threat to human and animal health. With increasing urbanization and more frequent interaction between humans and wild animals, the risk of Mpox transmission to humans has increased significantly. This review aims to examine in depth the epidemiology, pathogenesis, and diagnosis of Mpox, with a special focus on recent discoveries and advances in understanding the disease. Molecular mechanisms involved in viral replication will be examined, as well as risk factors associated with interspecific transmission and spread of the disease in human populations. Currently available diagnostic methods will also be discussed, with a critical analysis of their limitations and possible future directions for improving the accuracy and timeliness of diagnosis. Finally, this review will explore the public health implications associated with Mpox, emphasizing the importance of epidemiological surveillance, vaccination, and emergency preparedness to prevent and manage possible outbreaks. Understanding the epidemiology and control strategies for Mpox is critical to protecting the health of human and animal communities and mitigating the risk of interspecific transmission and spread of the disease.

7.
Pharmaceuticals (Basel) ; 17(4)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38675400

ABSTRACT

Systemic rheumatic diseases, including conditions such as rheumatoid arthritis, Sjögren's syndrome, systemic sclerosis, and systemic lupus erythematosus, represent a complex array of autoimmune disorders characterized by chronic inflammation and diverse clinical manifestations. This study focuses on unraveling the genetic underpinnings of these diseases by examining polymorphisms in key genes related to their pathology. Utilizing a comprehensive genetic analysis, we have documented the involvement of these genetic variations in the pathogenesis of rheumatic diseases. Our study has identified several key polymorphisms with notable implications in rheumatic diseases. Polymorphism at chr11_112020916 within the IL-18 gene was prevalent across various conditions with a potential protective effect. Concurrently, the same IL18R1 gene polymorphism located at chr2_103010912, coding for the IL-18 receptor, was observed in most rheumatic conditions, reinforcing its potential protective role. Additionally, a further polymorphism in IL18R1 at chr2_103013408 seems to have a protective influence against the rheumatic diseases under investigation. In the context of emerging genes involved in rheumatic diseases, like PARK2, a significant polymorphism at chr6_161990516 was consistently identified across different conditions, exhibiting protective characteristics in these pathological contexts. The findings underscore the complexity of the genetic landscape in rheumatic autoimmune disorders and pave the way for a deeper understanding of their etiology and the possible development of more targeted and effective therapeutic strategies.

8.
Chemotherapy ; 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38508151

ABSTRACT

BACKGROUND: Influenza viruses are etiological agents which cause contagious respiratory, seasonal epidemics and, for Influenza A subtypes, pandemics. The clinical picture of Influenza has undergone continuous change over the years, due to intrinsic viral evolution as well as "reassortment" of its genomic segments. The history of Influenza highlights its ability to adapt and to rapidly evolve, without specific circumstances. This reflects the complexity of this pathology and poses the fundamental question about its assumption as a "common illness" and its impact on public health. SUMMARY: The global influenza epidemics and pandemics claimed millions of deaths, leaving an indelible mark on public health, and showing the need for a better comprehension of the influenza virus. The clear understanding of genetic variations during the Influenza seasonal epidemics is a crucial point for developing effective strategies for prevention, treatment, and vaccine design. The recent advance in Next Generation Sequencing approaches, model systems to virus culture and bioinformatics pipeline played a key role in the rapid characterization of circulating Influenza strains. In particular, the increase of computational power allowed to perform complex tasks in healthcare setting through Machine Learning (ML) algorithms, which analyze different variables, such as medical and laboratory outputs, to optimize medical research and to improve public health systems. The early detection of emerging and re-emerging pathogens is of matter importance to prevent next pandemics. KEY MESSAGES: The perception of influenza as a "trivial flu" or a more serious public health concern is a subject of ongoing debate, reflecting the multifaceted nature of this infectious disease. The variability in the severity of influenza shed the light on the unpredictability of the viral characteristics, coupled with the challenges in accurately predicting circulating strains. This adds complexity to the public health burden of Influenza and highlights the need of targeted interventions.

9.
Infect Dis Rep ; 16(2): 281-288, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38525770

ABSTRACT

Here, we introduce the EpiConnect Intelligence Platform (ECIP), a platform facilitating rapid, transparent data sharing and analysis to support researchers and public health officials in Europe, with a focus on Italy. ECIP provides reliable, concise, machine-readable data to aid in epidemiological understanding, standardize case characteristics, and estimate key parameters. The platform adheres to FAIR (findable, accessible, interoperable, reusable) principles, offering easily accessible and downloadable datasets for researchers' endeavors. Future enhancements include involving national public health authorities, expanding data streams, and fostering collaboration between experts and users for improved epidemic risk monitoring. Shared standards among diverse surveillance systems are advocated to achieve common strategic goals, emphasizing the need for forward-looking policies to empower professionals to analyze disease dynamics in the context of evolving health crises. The recent emergencies underscore the importance of collective efforts towards shared strategic goals, highlighting the necessity for coordinated action to address mutual concerns affecting everyone's lives.

12.
Microbiol Resour Announc ; 13(4): e0122123, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38415642

ABSTRACT

Listeria monocytogenes is the etiological agent of the listeriosis. Here, we described three draft genome sequences of L. monocytogenes isolated in Italy from stranded individuals of the striped dolphin Stenella coeruleoalba. All the genomes have been molecular typed through the multilocus sequence typing to identify the phylogenetic lineage, clonal complex, sublineage, and serogroup.

14.
Viruses ; 16(1)2024 Jan 21.
Article in English | MEDLINE | ID: mdl-38275968

ABSTRACT

Orf virus (ORFV) belongs to the genus Parapoxvirus (Poxviridae family). It is the causative agent of contagious ecthyma (CE) that is an economically detrimental disease affecting small ruminants globally. Contagious ecthyma outbreaks are usually reported in intensive breeding of sheep and goats but they have also been reported in wildlife species. Notably, ORFV can infect humans, leading to a zoonotic disease. This study aims to elucidate the global evolutionary history of ORFV genomes in sheep and goats, including the first genomes from Central America in the analyses. In comparison to the last study on ORFV whole genomes, the database now includes 11 more sheep and goat genomes, representing an increase of 42%. The analysis of such a broader database made it possible to obtain a fine molecular dating of the coalescent time for ORFV S and G genomes, further highlighting the genetic structuring between sheep and goat genomes and corroborating their emergence in the latter half of 20th century.


Subject(s)
Ecthyma, Contagious , Orf virus , Humans , Sheep , Animals , Orf virus/genetics , Ecthyma, Contagious/epidemiology , Goats , Ruminants , Biological Evolution , Phylogeny
17.
J Med Virol ; 95(9): e29075, 2023 09.
Article in English | MEDLINE | ID: mdl-37665162

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 EG.5 lineage is the latest variant under monitoring, and it is generating significant concern due to its recent upward trend in prevalence. Our aim was to gain insights into this emerging lineage and offer insights into its actual level of threat. Both genetic and structural data indicate that this novel variant presently lacks substantial evidence of having a high capacity for widespread transmission. Their viral population sizes expanded following a very mild curve and peaked several months after the earliest detected sample. Currently, neither the viral population size of EG.5 nor that of its first descendant is increasing. The genetic variability appear to be flattened, as evidenced by its relatively modest evolutionary rate (9.05 × 10-4 subs/site/year). As has been observed with numerous prior variants, attributes that might theoretically provide advantages seem to stem from genetic drift, enabling the virus to continually adjust to its host, albeit without a clear association with enhanced dangerousness. These findings further underscore the necessity for ongoing genome-based monitoring, ensuring preparedness and a well-documented understanding of the unfolding situation.


Subject(s)
COVID-19 , Humans , SARS-CoV-2/genetics , Biological Evolution , Genetic Drift , Population Density
18.
Int J Mol Sci ; 24(17)2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37686383

ABSTRACT

The XBB.1.16 SARS-CoV-2 variant, also known as Arcturus, is a recent descendant lineage of the recombinant XBB (nicknamed Gryphon). Compared to its direct progenitor, XBB.1, XBB.1.16 carries additional spike mutations in key antigenic sites, potentially conferring an ability to evade the immune response compared to other circulating lineages. In this context, we conducted a comprehensive genome-based survey to gain a detailed understanding of the evolution and potential dangers of the XBB.1.16 variant, which became dominant in late June. Genetic data indicates that the XBB.1.16 variant exhibits an evolutionary background with limited diversification, unlike dangerous lineages known for rapid changes. The evolutionary rate of XBB.1.16, which amounts to 3.95 × 10-4 subs/site/year, is slightly slower than that of its direct progenitors, XBB and XBB.1.5, which have been circulating for several months. A Bayesian Skyline Plot reconstruction suggests that the peak of genetic variability was reached in early May 2023, and currently, it is in a plateau phase with a viral population size similar to the levels observed in early March. Structural analyses indicate that, overall, the XBB.1.16 variant does not possess structural characteristics markedly different from those of the parent lineages, and the theoretical affinity for ACE2 does not seem to change among the compared variants. In conclusion, the genetic and structural analyses of SARS-CoV-2 XBB.1.16 do not provide evidence of its exceptional danger or high expansion capability. Detected differences with previous lineages are probably due to genetic drift, which allows the virus constant adaptability to the host, but they are not necessarily connected to a greater danger. Nevertheless, continuous genome-based monitoring is essential for a better understanding of its descendants and other lineages.


Subject(s)
COVID-19 , Humans , Bayes Theorem , COVID-19/genetics , SARS-CoV-2/genetics , Genetic Drift
19.
Pathogens ; 12(9)2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37764882

ABSTRACT

Antibiotic resistance is a significant global health concern that affects both human and animal populations. The One Health approach acknowledges the interconnectedness of human health, animal health, and the environment. It emphasizes the importance of collaboration and coordination across these sectors to tackle complex health challenges such as antibiotic resistance. In the context of One Health, antibiotic resistance refers to the ability of bacteria to withstand the efficacy of antibiotics, rendering them less effective or completely ineffective in treating infections. The emergence and spread of antibiotic-resistant bacteria pose a threat to human and animal health, as well as to the effectiveness of medical treatments and veterinary interventions. In particular, One Health recognizes that antibiotic use in human medicine, animal agriculture, and the environment are interconnected factors contributing to the development and spread of antibiotic resistance. For example, the misuse and overuse of antibiotics in human healthcare, including inappropriate prescribing and patient non-compliance, can contribute to the selection and spread of resistant bacteria. Similarly, the use of antibiotics in livestock production for growth promotion and disease prevention can contribute to the development of antibiotic resistance in animals and subsequent transmission to humans through the food chain. Addressing antibiotic resistance requires a collaborative One Health approach that involves multiple participants, including healthcare professionals, veterinarians, researchers, and policymakers.

20.
Pathogens ; 12(9)2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37764961

ABSTRACT

Monkeypox, a viral zoonotic disease, has emerged as a significant global threat in recent years. This review focuses on the importance of global monitoring and rapid response to monkeypox outbreaks. The unpredictable nature of monkeypox transmissions, its potential for human-to-human spread, and its high morbidity rate underscore the necessity for proactive surveillance systems. By analyzing the existing literature, including recent outbreaks, this review highlights the critical role of global surveillance in detecting, containing, and preventing the further spread of monkeypox. It also emphasizes the need for enhanced international collaboration, data sharing, and real-time information exchange to effectively respond to monkeypox outbreaks as a global health concern. Furthermore, this review discusses the challenges and opportunities of implementing robust surveillance strategies, including the use of advanced diagnostic tools and technologies. Ultimately, these findings underscore the urgency of establishing a comprehensive global monitoring framework for monkeypox, enabling early detection, prompt response, and effective control measures to protect public health worldwide.

SELECTION OF CITATIONS
SEARCH DETAIL
...